关于高考数学几何类题目解题思路
关于高考数学几何类题目解题思路 高考数学考试中要注意不要轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。下面小编为大家带来高考数学几何类题目解题思路,希望对您有所帮助!解析几何中的探索性问题怎么答1.解题路线图①...
高考数学考试中要注意不要轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。下面小编为大家带来高考数学几何类题目解题思路,希望对您有所帮助!
所谓简单化策略,就是当我们面临的是一道结构复杂、难以入手的题目时,要设法把转化为一道或几道比较简单、易于解答的新题,以便通过对新题的考察,启迪解题思路,以简驭繁,解出原题。
解题中,实施简单化策略的途径是多方面的,常用的有: 寻求中间环节,分类考察讨论,简化已知条件,恰当分解结论等。
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
集中注意力是数学考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中半岛·体育,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。
良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到数学试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生 “旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。
知识是思想方法的载体,数学问题是在数学思想的指导下,运用知识、方法加工的对象。皮之不存,毛将焉附?离开具体的数学活动的思想方法的教学是不可能的。
数学思想方法与数学知识的共存性、数学思想对数学活动的指导作用、被认知的思想方法只有在反复的运用中才能被真正掌握这一教学规律,都决定了成功的思想方法和教学只能是有意识的贯通复课全程的教学。特别是有广泛应用性的数学思想的教学更是如此。如数形结合的思想,在数学的几乎的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。
相当一部分同学考试的分数不高,不少是因为会做的题做错,特别是基础题。究其原因,有知识方面的,也有方法方面的。因此,要加强对以往错题的研究,找错误的原因,对易错知识点进行列举、易误用的方法进行归纳。
如:过一点作直线时忽略斜率不存在的情形;等比数列求和时忽略对q=1的讨论;利用前n项和Sn求数列通项时忘记讨论n=1的情况;用韦达定理时忽略判别式;换元或者消元时忽略范围等。同学们可两人一起互提互问,在争论和研讨中纠正,效果更好。找准了错误的原因,就能对症下药,使犯过的错误不再发生,会做的题目不再做错。